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Abstract
In this paper we present a novel system for the automated reconstruction of cortical surfaces from
T1-weighted magnetic resonance images. At the core of our system is a unified Reeb analysis
framework for the detection and removal of geometric and topological outliers on tissue
boundaries. Using intrinsic Reeb analysis, our system can pinpoint the location of spurious
branches and topological outliers, and correct them with localized filtering using information from
both image intensity distributions and geometric regularity. In this system, we have also developed
enhanced tissue classification with Hessian features for improved robustness to image
inhomogeneity, and adaptive interpolation to achieve sub-voxel accuracy in reconstructed
surfaces. By integrating these novel developments, we have a system that can automatically
reconstruct cortical surfaces with improved quality and dramatically reduced computational cost
as compared with the popular FreeSurfer software. In our experiments, we demonstrate on 40
simulated MR images and the MR images of 200 subjects from two databases: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and International Consortium of Brain Mapping (ICBM),
the robustness of our method in large scale studies. In comparisons with FreeSurfer, we show that
our system is able to generate surfaces that better represent cortical anatomy and produce
thickness features with higher statistical power in population studies.

Index Terms
Cortical surface reconstruction; Reeb graph; topology correction; Laplace-Beltrami
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I. Introduction
Cortical surface reconstruction from magnetic resonance (MR) images is a critical problem
in brain mapping which provides the geometric foundation for measuring cortical
morphometry and tissue integrity. While many sophisticated algorithms were developed for
its solution [1]–[11], significant challenges remain in improving the accuracy, robustness,
and speed of cortical reconstruction. In this work, we develop a novel system for the
automated reconstruction of cortical surfaces from T1-weighted MR images based on
intrinsic analysis of geometry and topology using the Reeb graph of Laplace-Beltrami
eigenfunctions. We demonstrate that our system can robustly reconstruct high quality
cortical surfaces on large scale data sets.

The successful reconstruction of cortical surfaces requires the development of a complicated
image analysis system that includes preprocessing steps such as inhomogeneity correction
[12], nonlinear registration [13]–[16], skull stripping [17]–[19], and tissue classification
[20]–[23]. Even though different combinations of preprocessing methods were made in
various systems, a popular choice for surface formation is that a smooth white matter (WM)
surface, which represents the boundary between WM and gray matter (GM), with correct
topology is first reconstructed, and then deformed to find the GM surface that represents the
boundary of the GM and cerebrospinal fluid (CSF). Due to limited image resolution, partial
failure of preprocessing steps, or anatomical variability across population, however,
geometric outliers, such as spurious spikes, and topological outliers, such as handles and
tunnels, occur frequently during the surface reconstruction process. To build high quality
surface representations of tissue boundaries, the challenge is the removal of both types of
outliers without sacrificing accuracy.

Geometric and topological outliers were handled separately in previous works. To avoid
geometric outliers in the reconstructed surface, smoothness regularization was applied
globally together with data terms in surface evolution [4], [5], [7], [8], [11]. This
regularization-based method, however, has two problems. First, it only helps but does not
guarantee the occurrence of geometric outliers can be prevented, which could be due to
leakage into non-cortical areas not removed by skull-stripping. Second, shrinkage can arise,
especially in deep sulcal regions, because the regularization is enforced everywhere on the
surface, even at places it is unnecessary. This could affect the accuracy in cortical thickness
measurements and lead to decreased power in statistical analysis.

To ensure genus-zero topology in reconstructed surfaces, topology-preserving deformations
can be used [1], [3], [4], [24], [25] after topological outliers are removed. There are mainly
two different approaches for topological outlier detection and correction. The first approach
works in the voxel space and uses graph analysis and morphological operations for topology
analysis [22], [26], [27], however cut decisions are made according to the geometric size of
outlier branches only. The second approach uses the triangular mesh representation of the
surface and detects topological outliers from overlapping triangles after mapping the surface
to the sphere [28], [29]. Cut/fill decisions are then made according to image intensity and
curvature distributions. The drawback of this approach is that it relies on the spherical
mapping for outlier detection, which is computationally expensive and not suitable for
complicated surfaces with large number of handles and tunnels.

In this work, we present a novel system for automated reconstruction of cortical surfaces
from MR images. At the core of our system is a unified approach for the correction of
geometric and topological outliers based on intrinsic geometry. With well-composed
boundary deformation driven by evolution speeds derived from the MR image [30], [31],
our system builds manifold representations of tissue boundaries and computes the Laplace-
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Beltrami (LB) eigenfunctions [32]–[43] as Morse functions for Reeb analysis [44]–[49],
where we develop a novel algorithm for the efficient construction of Reeb graphs to capture
manifold geometry and topology. By analyzing the loops and branches of the intrinsically
defined Reeb graph, we develop a unified approach for the detection and correction of
geometric and topological outliers. For geometric outliers, intrinsic Reeb analysis naturally
leads us to perform localized outlier filtering without causing unintended shrinkage to other
parts of the cortex. By computing paired boundary estimates with different topology
constraints, our system carefully takes into account information from tissue analysis and
geometric regularity for the cut or fill decisions in the correction of topological outliers.

Besides the novel method for geometric and topological outlier correction, there are two
other key components in our system. The first is the enhancement of tissue classification
with geometric features to help overcome ambiguities in tissue classification. By using
features derived from the Hessian of images [50], [51], this improvement enables us to rely
on information in the data instead of artificial assumptions to separate touching gyri and
alleviate the impact of partial volume effects on misclassification. The second key element
is an adaptive interpolation algorithm that achieves sub-voxel accuracy for the final surface.
With locally estimated tissue property, we position the surface at sub-voxel locations for the
accurate representation of cortical anatomy.

By integrating these novel developments, we build a robust and efficient system for
automated cortical reconstruction. An overview of our system is shown in Fig. 1. Given a
skull-stripped MR image, we perform enhanced tissue classification and nonlinear
registration as described in section II to design initial evolution speeds for the WM and GM
surface. Using methods developed in section III and IV, geometric and topological outliers
in the WM evolution speed are then corrected with our unified approach, which produces an
evolution speed for the estimation of a clean WM boundary. To obtain the GM boundary,
we deform the WM boundary outward with the GM evolution speed. Geometric outliers in
the GM boundary are removed with intrinsic Reeb analysis. Finally adaptive interpolation
developed in section V is applied to both the WM and GM boundary to generate the WM
and GM cortical surfaces with sub-voxel accuracy.

The rest of the paper is organized as follows. In section II, we present the tissue
enhancement algorithm and derive the evolution speeds for WM and GM boundary
estimation. The construction of the manifold representation of tissue boundaries and their
Reeb graphs are developed in section III. Using paired boundary estimates, we develop in
section IV the unified approach for geometric and topological outlier correction with
intrinsic Reeb analysis and localized filtering. In section V, the adaptive interpolation
algorithm is developed for sub-voxel accuracy. Experimental results are presented in section
VI, where we present detailed comparisons with FreeSurfer [5], [52] and demonstrate that
our system can achieve better performance on both simulated and real MR images from two
databases. Finally conclusions are made in section VII.

II. Enhancing Tissue Classification
Tissue classification typically uses statistical models to map intensities to three tissue types
in the brain: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) [20]–
[23], but inhomogeneity and partial volume effects usually compromise the effectiveness of
such models in correctly identifying thin structures. To enhance fractions of CSF between
touching gyri, skeletons of weighted distance transforms from WM were proposed to open
up CSF regions [7], but the challenge is that the WM map by itself has inherent uncertainty.
In this section, we propose to use features directly derived from the data, which is the eigen-
structure of the Hessian, to enhance tissue maps and capture thin structures. Instead of just
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enhancing the CSF maps, our method applies to thin structures in both WM and CSF maps,
which leads to more integral reconstructions of both WM and GM surfaces. Based on the
enhanced tissue maps and atlas labels, we then define evolution speeds for boundary
estimation.

Let Ψ : A → ℝ denote the skull-stripped MR image, where A is the lattice of voxels that we
represent as A = {(i, j, k) ∈ ℤ3|0 ≤ i < I − 1, 0 ≤ j < J − 1, 0 ≤ k < K − 1}. With partial
volume models, a tissue classifier typically uses the intensity at each voxel to assign it as
either one of three brain tissue types: GM, WM, CSF, or a weighted combination of WM
and GM at the WM boundary, and GM and CSF at the GM boundary. Let pGM, pWM, pCSF
denote the individual tissue maps of GM, WM, and CSF, which we compute in this work
with the FAST tool in the FSL software [21]. Tissue classification is a critical step in our
system as it provides the basis for our enhancement algorithm. We designed our system with
the flexibility of taking inputs from any software that generates tissue maps with partial
volume models. Here we choose the FAST tool because of its robustness across various
datasets. It is also relatively efficient and can compute results in less than 10 minutes. At
each voxel, the individual tissue map represents the fraction of the voxel belonging to the
corresponding tissue. Voxels where all tissue maps are zero are labeled as background (BG).
Using the tissue maps, we can define a composite tissue map as

(1)

for all p = (i, j, k) ∈ A. This composite map provides a simple way of representing the
partial volume tissue models. As an example, the composite tissue map of an MR image in
Fig. 2 (a), which is from a patient with Alzheimer’s disease, is plotted in Fig. 2 (e).

Because tissue classification relies on intensity information to assign tissue types, it does not
necessarily follow the geometric assumptions of partial volume models. For example, voxels
with small factions of WM tissue should be either on the boundary of definite WM voxels or
ridges of the image. When neighboring gyri touch each other, voxels in between with tiny
fractions of CSF may exhibit as valleys in image intensities. Even though such ridges and
valleys have distinctive geometric characteristics, partial volume modeling with intensity
distributions may not be sensitive enough to detect them. To overcome this difficulty, we
will compute an enhanced tissue map based on Hessian features of the image, which is well-
known for ridge detection in image analysis [50], [51].

At a voxel p = (i, j, k) in the MR image Ψ, we denote its gradient as ∇Ψ(p), and Hessian as:

(2)

where the entries are the second order gradients of Ψ at this voxel. The eigenvalue of
Hessian(p) with the maximal magnitude is denoted as λmax(p), and the corresponding
eigenvector is denoted as vmax(p). At each voxel, we define the tissue enhancement feature
as
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(3)

where the inner product between ∇Ψ(p) and vmax(p) is the gradient of Ψ along vmax(p) at
the voxel. For voxels at the top of ridges or bottom of valleys, we have | < ∇Ψ(p), vmax(p) >
| ≈ 0. Using the sign of λmax, we can determine whether it is a ridge or valley. With this
tissue enhancement feature, we can help resolve ambiguities in intensity-based tissue
classification. As an example, we show in Fig. 2(b) the tissue enhancement feature.
Compared with the image in Fig. 2(a) and the original tissue map in Fig. 2(e), we can see
that this feature successfully detects ridges and valleys, but there are also false positives that
need to be cleaned.

To filter out these false positives, we use a nonlinear registration software ANTS [16] to
register the image to the LPBA40 atlas [53] and warp the probabilistic GM atlas, which
assigns to each voxel a probability of belonging to the GM, and anatomical labels to the
image space. With the help of nonlinear registration, we can take advantage of atlas
information to improve the robustness of our tissue enhancement algorithm and guide the
design of evolution speeds for surface reconstruction. Here we choose the ANTS tool for
nonlinear warping because of its efficiency in obtaining high quality MR image registration
[54]. Typically we can obtain very accurate warped labels and GM atlas in around 30

minutes with the ANTS software. Let  denote the warped GM atlas in the image space.

As an illustration, the GM atlas  is shown in Fig. 2(c), and the warped anatomical
labels are shown in Fig. 2(d). Using the anatomical labels, we denote RSUB = {p ∈ A|p ∈
(putamen, caudate, ventricle)} as the set of voxels belonging to the sub-cortical structures
putamen, caudate and ventricles. Using the tissue enhancement feature and atlas labels, we
can filter out outliers and detect CSF valleys and WM ridges.

Let RCSF = {p ∈ A|Φ(p) ≤ 2, TE(p) > δCSF, , p ∉ RSUB} be the set of
candidate voxels on the CSF valley, where δCSF is a threshold we typically choose as 2.
Because the CSF between touching gyri will occupy tiny fractions of voxels, we apply a
thinning algorithm as listed in Table I to RCSF using −TE as the ridge/valley detection
feature. Starting from the boundary voxel of RCSF with the least feature value TE, this
thinning algorithm iteratively removes voxels if its feature TE is above the threshold δCSF
and is a simple point [24], [55], i.e., peeling it off will not result in a topological change. As
a result, we obtain a thin set of voxels R̂CSF with the maximal tissue enhancing feature.

For partial WM voxels, we detect voxels on the top of ridges to follow the geometry of
partial volume models. Let RWM = {p ∈ A|2 < Φ(p) < 3, TE(p) < δWM, p ∉ RSUB} be the
set of candidate voxels on the ridge, where δWM is a threshold for ridge detection that we
typically choose as −2. Applying the thinning algorithm to the set RWM with TE as the
ridge/valley detection feature, we obtain a thin set of voxels R̂WM with partial WM.

Using these results, we can define an enhanced tissue map Φ̂ as

(4)

For the MR image shown in Fig. 2(a), the enhanced tissue map is shown in Fig. 2(f).
Compared with the original tissue map in Fig. 2(e), we can see that it successfully opens up
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deep sulci in buried gyral regions, and enhances thin WM regions such as the top of the
superior frontal gyrus.

Using the enhanced tissue map, we can design evolution speeds for surface generation based
on the fast evolution algorithm [31], [56], [57]. By dividing the image into left hemisphere
(LH) and right hemisphere (RH) using the warped anatomical labels as shown in Fig. 2(d),
we reconstruct the surfaces of each hemisphere separately. In each hemisphere, the
evolution speed defined over the grid A for the WM boundary is:

(5)

and the GM boundary is:

(6)

The thresholds in (5) and (6) are chosen for the robustness to remaining inhomogeneities
and minimization of mesh distortion in reconstructed surfaces. While the correction of
inhomogeneity is applied before tissue classification, some remaining inhomogeneities can
still exist in various regions of the brain. For example, in regions with hyper-intensities,
large blocks of CSF voxels could be included to the interior of the GM boundary if the
threshold is selected toward one in (6). On the other hand, in regions with relatively low
intensities, large areas of GM voxels could be left out if the threshold is chosen toward two
in (6). To achieve a balance in both situations, we choose the thresholds in (5) and (6) such
that only voxels containing at least 50% of the WM or GM tissue are included in the WM or
GM speed. As illustrated in Fig. 2 (g) and (h), the final reconstructed boundaries are
optimally determined with the adaptive interpolation method in section V, which shifts the
position of voxel boundaries with locally estimated tissue properties. By putting voxels with
more than 50% of the WM or GM tissue to the interior of the boundary and voxels with less
than 50% of the WM or GM tissue to the exterior of the boundary, we restrict the movement
of all boundary points to be around half of the voxel resolution. This avoids large distortion
of triangles and leads to improved mesh quality in reconstructed WM and GM surfaces.

In the next two sections, we will develop the unified approach for the removal of both
geometric and topological outliers in the evolution speeds. After that, sub-voxel accuracy
will be achieved with the adaptive interpolation scheme in section V to generate the final
cortical surfaces.

III. Intrinsic Reeb Graphs on Tissue Boundaries
In this section, we develop numerical algorithms for the construction of intrinsic Reeb
graphs on tissue boundaries that correspond to the interface of different tissue types. We first
build a mesh representation of tissue boundaries using the evolution speeds computed in
section II. With the LB eigenfunction as the Morse function, a novel numerical algorithm is
then developed to construct Reeb graphs that intrinsically capture the geometric and
topological structure of the tissue boundary.

A. Mesh representation
Starting from an initial mask, we run a fast boundary evolution algorithm, which we
developed in our previous work [31], [56], [57], following the evolution speed in (5) or (6).
The boundary evolution process separates the lattice of voxels A into two regions: the object
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region Ao and the background region Ab. To extract the continuous representation of the
boundary between regions, we consider each grid point p = (i, j, k) ∈ A as the center point
of a rectangular cuboid (p) = {(x, y, z) ∈ ℝ3| |x−ihx| ≤ hx/2, |y − jhy| ≤ hy/2, |z − khz| ≤ hz/
2}, where hx, hy, and hz are the spatial sampling resolutions in the x, y and z direction of the
MR image. Under this cuboid representation, each voxel has six rectangular faces.

Because the well-composedness condition [30] is satisfied in our reconstruction [31], the
boundary between Ao and Ab is a manifold and composed of a set of rectangular faces B =

{B1, B2, · · ·, BNB}. Each face Bi is the intersection of the cuboids of two voxels: 

and . This establishes a map from boundary faces to voxels in the object region

 with  and the background region  with . By
dividing each rectangular face Bi into two triangular faces  and , we have a triangular
mesh representation of the boundary  = { , }, where  = { |i = 1, · · ·, NV} and  =
{ |i = 1, · · ·, 2NB} are the set of vertices and triangles. For each face , we know it is on
the boundary face Bi with i = ⌊(j + 1)/2⌋, where ⌊x⌋ denotes the greatest integer less than or
equal to x. We can define the maps from each triangular face to voxels in Ao and Ab as:

 and . These maps allow us to move freely
between the surface representation and voxel representation of the tissue boundary under
consideration.

B. Laplace-Beltrami eigen-system
With the triangular mesh representation of the boundary  = { , }, we can compute its
LB eigen-system by solving a matrix eigenvalue problem [31]–[33]:

(7)

where λ is the eigenvalue, f :  → ℝ is the eigenfunction, and the two matrices Q and U are
formed using the finite element method [58]. More specifically, the matrices are defined as:

where  ( ) is the set of vertices in the 1-ring neighborhood of ,  ( , ) is the set of

triangles sharing the edge ( , ),  is the angle in the triangle  opposite to the edge ( ,
), and Area( ) is the area of the l-th triangle .

The LB eigen-system is discrete and the eigenvalues can be ordered as 0 = λ0 ≤ λ1 ≤ λ2 ≤ · ·
·. Correspondingly, the eigen-functions are f0, f1, f2, · · ·. The LB eigen-system is
intrinsically defined on manifolds and has the nice property of being isometric invariant. It
has been applied successfully for various shape analysis tasks in computer vision and
medical imaging [32]–[43]. In particular, we will use the first non-constant LB
eigenfunction f1 here as the Morse function for Reeb graph construction [59], which is the
solution of the minimization problem
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(8)

and can be viewed as the smoothest map from the manifold  to the real line ℝ. As an
illustration, the LB eigenfunction f1 on a WM boundary surface is plotted in Fig. 5(a).
Similar to our previous work in hippocampal modeling with LB eigenfunctions [39], we can
see the LB eigenfunction intrinsically models the front-to-posterior trend of the cortical
surface.

C. Reeb graph
Given a Morse function f on the mesh , its Reeb graph is defined as follows [44].

Definition 1—Let f :  → ℝ. The Reeb graph R(f) of f is the quotient space with its
topology defined through the equivalent relation x ≃ y if f(x) = f(y) for ∀x, y ∈ .

Following this abstract definition, the Reeb graph is intuitively a graph of level contours of f
on . For the construction of Reeb graphs on surfaces with general topology, previous
methods typically need to scan through the whole mesh to detect topological changes of
level contours [46]–[48]. Because level contours change topology only at critical points of f,
Reeb graph is essentially a graph of critical points. By using level contours at saddle points,
an efficient Reeb graph construction algorithm was proposed in [49], but it uses triangle-
based region growing and cannot handle densely distributed saddle points. The partition
generated by the method in [49] produces non-manifold regions which are not suitable for
further analysis with intrinsic geometry. To overcome these drawbacks, we develop a novel
method for Reeb graph construction on high genus meshes. The key idea here is that we
augment the mesh with level contours crossing the upper and lower neighborhood of saddle
points to process close saddle points. In our method, the surface partition generated by the
Reeb graph ensures each surface patch is a manifold, so that further analysis of geometry
and topology, such as the computation of geodesics, can be performed.

The critical points of f can be classified into maximum, minimum, and saddle points. For a
vertex  ∈ , and its one-ring neighborhood  ( ). Let  ( ) = {  ∈  ( )|f ( ) < f
( )} and  ( ) = {  ∈  ( )|f ( ) > f( )} denote the lower and upper neighbors in the
1-ring neighborhood of a vertex . Let # denote the number of connected components in a
set. Using the number of connected components in  ( ) and  ( ), we can classify the
vertices as follows:

(9)

Let C = {C1, C2, · · ·, CN} be the set of critical points of f on the surface . We assume all
critical values are different and sort the critical points according to the critical values such
that f(C1) < f (C2) < · · ·< f (CN). For anatomical shapes without perfect symmetry, we find
this assumption always holds in our experience. For synthetic shapes with perfect symmetry,
we can perturb the metric [37], [43] and make sure this assumption is valid. To accurately
represent the partition of the surface by neighboring saddle points on the Reeb graph, which
could have very subtle differences in the function values, we will augment the original mesh
by splitting its triangles along the level contours during the Reeb graph construction process.
We denote this augmented mesh as  = ( , ), where  and  are the augmented set of
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triangles and vertices of M̂. The Reeb graph is represented as R(f) = (C, E), where C = {C1,
C2, · · ·, CN} is the set of critical points and act as nodes of the graph, and E = {E1, E2, · · ·}
is the set of arcs. Each arc in R(f) is represented as , where
SCi, ECi ∈ C are the start and end node, ETi ⊂ T̂ is the set of triangles belonging to this arc
in R(f),  and  are the level contours on the boundary of the arc. The set of triangles
ETi represent the subset of  enclosed by  and  and form a manifold with
boundaries.

To construct the Reeb graph, we need to find the arcs connecting these critical points. Let j
denote the current arc label that is initialized as −1. The augmented set of triangles  and
vertices  are initialized as the original triangle set  and vertex set , respectively. We also
assign a label function ArcLabel and initialize it to be −1 for all vertices in . We scan
through these critical points sequentially as follows to build the Reeb graph.

If Ci is a minimum, we increase the current arc label j by one and create a new arc Ej. We set

the start node of Ej as SCj = Ci, and its start level contour as . We also set
ArcLabel(Ci) = j. Note that this arc is incomplete and we need to find the end node ECj, the

end level contour , and the triangles ETj.

If Ci is a saddle point, we first define the isovalues of level contours for arcs entering and
leaving this node. For the incoming arcs, the isovalue is defined as:

(10)

For outgoing arcs, the isovalue is defined as:

(11)

The definition ensures that there is no interference from other critical points and that every
arc in the Reeb graph would have a manifold structure. This enables us to use existing
algorithms for surface analysis such as finding geodesics [60].

For each component in the lower neighborhood  (Ci) of the saddle point Ci, we trace a
level contour at the value  on the mesh . From the definition of , we know
that this level contour crosses all edges between Ci and vertices in this component. This
level contour is represented as a polyline P = (p1, p2, · · ·, pN) composed of points
intersecting edges of  at the level . We augment the mesh with this set of
new vertices by adding edges. Let pk and pk+1 be two consecutive points that intersect the
two edges of a triangle = ( , , ) in . As shown in Fig. 3, we either keep this triangle
intact or split it into two or three triangles and add them to . Repeating this process for all
line segment in this level contour, we add all points to  as new vertices in the mesh.
Starting with these new vertices in P, we then grow backward using the algorithm in Table.

II and complete an arc Ej in the Reeb graph R(f). We set ECj = Ci, , and ETj = Ξ,
which are the set of triangles in  in the augmented mesh  that belong to this arc of the
Reeb graph. We repeat this process until all arcs connecting Ci and  (Ci) is crossed by a
level contour.
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For each component in the upper neighborhood  (Ci) of the saddle point Ci, we trace a

level contour at the value  that cross all edges connecting Ci and vertices in this
component. Similarly, this level contour is represented as P = (p1, p2, · · ·, pN) and all
intersecting points in this level contour are added to the augmented vertex set  of the mesh

. A new, but incomplete, arc in the Reeb graph is created and we increase the current arc
label j by one. We set SCj = Ci, , and set ArcLabel(pk) = j for all newly added
vertices pk ∈ P. This process is repeated until all edges connecting  (Ci) is crossed.

If Ci is a maximum, we grow backward with it as the starting point using the algorithm in

Table. II to complete an arc Ej. We set ECj = Ci, , and the triangle set ETj = Ξ.

By repeating the above process for all critical points, we complete the construction of the
Reeb graph R(f). While this Reeb graph is defined on the augmented mesh , which has
non-uniform triangles generated from the triangle-splitting process, we can build a map μ: 
→  to relate the properties derived from R(f) to the original mesh  that has regular
triangles. For each triangle  ∈ , the map μ( ) denotes the triangle in  such that  is a
subset. This is a many-to-one map since the triangles in  is obtained by splitting triangles in

. By establishing a map between the triangles of  and , we build a bridge between the
Reeb graph on the augmented surface  and the evolution speed defined in the voxel space,
which we want to modify with intrinsic Reeb analysis. Once the outliers detected by Reeb
analysis are corrected, we can generate the final WM and GM surfaces with the regular
mesh structure of  to produce high quality mesh representations.

As an example, we show in Fig. 4 the construction of the Reeb graph on a double torus. The
Morse function, which is the first non-constant LB eigen-function of the double torus, is
plotted in Fig. 4 (a), where the level contours at a saddle point Ci is illustrated. One level
contour is generated that crosses edges connecting the lower neighborhood  (Ci) and this
saddle point. Two level contours are generated crossing the edges connecting the upper
neighborhood  (Ci) and Ci. The arc construction process is illustrated in Fig. 4 (b), where
all arcs are plotted in different colors. For each arc, we also plot its two nodes as black dots.
In the first step, an arc between a saddle point and a minimum is constructed. In the 2nd,
3rd, and 4th step, arcs between saddle points are added sequentially to the Reeb graph. In the
final step, an arc between a maximum and a saddle point is constructed. The final Reeb
graph is visualized in Fig. 4 (c) by plotting triangles on each arc of R(f) with corresponding
colors used in Fig. 4 (b), where the graph structure is evident from the neighboring relation
of the arcs.

IV. Unified Analysis of Geometric and Topological Outliers
Similar to previous works [5]–[7], our system first reconstructs a clean WM surface with the
correct topology and then deform it to obtain the GM boundary. In this section, we develop
the unified approach for the removal of geometric and topological outliers on the WM
boundary. With topology-preserving evolution, the cleaned WM boundary with genus-zero
topology is deformed to generate the GM boundary. While we develop this unified approach
in the context of WM surface reconstruction, the method is general and applicable to the
analysis of surfaces of arbitrary topology. In particular, we apply it to the GM boundary with
spherical topology to remove geometric outliers.

To remove outliers on the WM boundary, we iteratively modify the WM evolution speed
with intrinsic Reeb analysis. Using the WM evolution speed, we first compute paired
estimates of the WM boundary with and without topology constraints. By comparing the
paired boundary estimates, we derive filling voxels for topological artifacts, which provide
the basis for cut or fill decisions in topological analysis if the operation is consistent with
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underlying tissue properties. By analyzing the intrinsically defined Reeb graph on the WM
boundary, we detect geometric and topological outliers and design modifications to the WM
evolution speed for their removal. With the modified evolution speed, the above steps are
repeated until no change is necessary. Next we describe the details of each step.

A. Paired boundary estimates
Given the WM evolution speed FWM, we use the fast evolution algorithm described in [31]
to compute a pair of estimates of the WM boundary for topological analysis. Starting from a
genus-zero mask, we evolve the mask toward the boundary under the topology-preserving
constraint, which is ensured by only updating points satisfying the simple and well-
composedness condition. This generates a genus-zero estimate of the object boundary. The

region enclosed by the boundary is denoted as  and the background region is denoted as

. The triangular mesh representation of the boundary is  = ( , ). For topological
analysis, we turn off the topology-preserving constraint and continue the boundary evolution
process under the same speed FWM to obtain the second boundary estimate, which can have
arbitrary topology. The object and background region determined by this boundary are

denoted as  and , and the boundary mesh is denoted as  = ( , ).

By comparing the paired boundary estimates  and , we can locate paired patches on
 that together fill a handle or tunnel in . For all faces on  with their interior voxel in

the background region of , i.e., , where the map  was defined in section
III-A, we perform a connected component labeling and denote the set of connected

components as . For faces in the k-th component , we

define a connected component (CC) label . To find paired patches on  that
jointly fill a tunnel or handle, we want to find the set of filling voxels that connect different

components in CCG and fill topological handles or tunnels. For every voxel p in ,
which is the set of all interior voxels of faces in CCG, we define a set PL(p) as the paired

labels of connected components it bridges. For each face , we first assign its CC

label to . Note that there can be at most two components sharing an interior
voxel, so there cannot be more than two labels in the paired label set PL(p) for any voxel p.

Because a subset of the voxels were included in  to satisfy the well-composedness

constraint, they do not directly touch two opposing patches in . For each 
with #PL(p)=1, we search its six-neighborhood  (p). If there is a voxel q ∈  (p) that
satisfies #(PL(q) ∪ PL(p)) = 2, which means they together form a bridge to connect two

patches, we set PL(p) and PL(q) as the union of these two sets. For each face ,

we assign it the paired label  of its interior voxel if .
Using paired labels, we group triangles with the same paired labels into paired components

 and denote  as the set of filling voxels for topological
artifacts. As an illustration, we show in Fig. 7 (b) and (d), the filling voxels for a handle and
tunnel, respectively. By analyzing the underlying tissue properties on filling voxels, cut or
fill decisions could be made in topological analysis with the inclusion of information from
tissue classification.

For the unified analysis of geometric and topological outliers on the WM boundary , we
compute its LB eigenfunctions and construct the Reeb graph. Let f = f1 be the first LB
eigenfunction of , as illustrated for a WM boundary in Fig. 5 (a), and R(f) = (C, E) the
Reeb graph of f on , where C denotes the set of critical points, and E the set of arcs. The
augmented mesh from the Reeb graph construction is denoted as M̂F = ( , ). The map
from the triangles on  to  is denoted as μ:  → . Each arc of the Reeb graph
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, where SCi, ECi ∈ C are the start and end node, and ETi ⊂
 is the set of triangles on this arc in R(f),  and  are the level contours at the start

and end node. The degree of a node in the Reeb graph is the number of arcs that it is either
the start or the end node. A node is called a leaf node if its degree is one, and an internal
node if its degree is greater than one. The arc connected to a leaf node is called a leaf arc.

B. Geometric outlier correction
We detect geometric outliers from the set of leaf arcs in the Reeb graph. Left Ei be a leaf arc
with  and  as the start and end level contour. Using the level contour  and ,
we define an arc feature H(Ei) as follows:

(12)

where n is the outward normal on the surface ,  and  are the mean coordinates of
points on  and . If H(Ei) > 0, it means Ei is an outward leaf pointing toward the
exterior of the cortex; otherwise, it is an inward leaf that points toward the interior of the
cortex.

We consider this leaf arc as an outlier if it satisfies two conditions:

(13)

where Area(ETi) is the sum of area of all triangles in ETi, the parameters ρ1 and ρ2 are
thresholds selected to identify sharp and small outliers. To further localize geometric
outliers, we project the original mesh  onto a subset of its LB eigenfunctions S = {f0, f1,
f2, f3} and calculate the area distortion of triangles. For each triangle in , its area distortion
factor (ADF) is defined as

(14)

where  and  are the area of the triangle  in the original mesh  and
the projected mesh . For an outlier leaf arc, we define the set of outlier triangles as
Outlier(ETi) = {  ∈ μ(ETi)|ADF ( ) > γ}, where μ(ETi) is the set of triangles obtained by
mapping the triangles in ETi to the original mesh , and the parameter γ is a threshold used
for further localization of geometric outliers to triangles that exhibit large area distortions
during the projection onto the subspace of LB eigenfunctions [31]. To localize outliers on
sub-cortical surfaces, the method in [31] relies exclusively on eigen-projection and needs to
use hundreds of eigen-functions to form the subspace. For the much more complicated
cortical surfaces, we observe in our experiments that a much larger number of eigen-
functions are needed to achieve similar localization of outliers. This is computationally very
expensive and clearly infeasible for efficient processing because the number of vertices on a
cortical surface is typically two orders of magnitude larger than many sub-cortical
structures. If we use the same subspace S of the first four eigen-functions, the eigen-
projection method in [31] would produce a large number of false positives, especially on the
frontal lobe, as shown in Fig. 5(b). In contrast, we show in Fig. 5(c) and (d) that we can
achieve much better performance with the Reeb analysis approach proposed here using the
same number of eigen-functions. A zoomed view of detected geometric outliers is plotted in
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Fig. 5(c), which shows that the proposed method achieves accurate outlier localization with
very few eigen-functions.

To remove the outlier, we modify the evolution speed FWM as follows. If Ei is an outward

leaf, we set  for all  ∈ Outlier(ETi) so that its interior will be removed.

If Ei is an inward leaf, we set  for all  such that its
exterior will be filled and the outlier can be removed. In contrast to previous methods that
rely on global smoothness regularization to avoid geometric outliers, our method only
modifies the evolution speed locally while leaving other parts of the boundary intact. This
greatly decreases shrinkage effect and help improve the accuracy in surface reconstruction.

C. Topological outlier correction
For topological analysis, we first remove duplicated arcs in R(f). For any two arcs with the
same start and end node, we remove the one with smaller size from R(f) and add it as a
topological outlier to a set we denote as TO. After that, we can represent the Reeb graph
R(f) as a matrix W and apply standard graph search algorithms to locate the remaining
topological outliers. For any arc Ei ∈ R(f), we set W (i1, i2) = Area(ETi), where i1 and i2 are
the indices of the start and end critical points, respectively, and Area(ETi) is the area of this
arc.

We detect topological outliers from redundant paths between saddle points in the Reeb
graph. Using the matrix representation of the Reeb graph, we analyze paths starting at each
node to locate topological outliers. For a node Ci in the directed graph W, if there are more
than one out-going arcs, we use breadth-first-search (BFS) to test if an outlier exists. Let j1, ·
· ·, jK denote the set of neighboring nodes which satisfies W (i, j1) > 0, · · ·, W (i, jK) > 0. For
every outgoing arc, we set W (i, jk) = 0 and perform BFS with Ci as the starting node. This
generates a spanning tree of nodes reachable from Ci after the removal of the arc (Ci, Cjk).
The spanning tree is recorded as an array PARk. For each node Cj, PARk(Cj ) is the parent
node in this spanning tree if it is reached by Ci from PARk(Cj). By repeating this step for all
outgoing arcs at Ci, we generate a set of BFS trees PAR1, …, PARK. The intersection node
CJmin of these trees is defined as the node with the smallest index j such that PARk(Cj) > 0
for all k = 1, · · ·, K. Starting from the intersection node CJmin, we trace backward to the
current node Ci on each BFS tree PARk and record the path as PATHk = (Ci, · · ·,
PARk(CJmin), CJmin). The cost of this PATHk is the total area of all arcs on this path. Among
all paths we pick the one with the smallest cost and add all arcs on this path to the outlier set
TO as topological outliers. As an illustration, the topological outliers detected with Reeb
analysis on the surface in Fig. 5(a) are plotted in red in Fig. 5(c) and (d). A zoomed view of
a topological outlier is plotted in Fig. 5(d).

To provide further localization of topological operations, we compute cutting paths on the
handles and tunnels detected by Reeb analysis. For each arc in the outlier set TO, we first
decide if this is a handle or tunnel on the boundary and then apply different analysis
strategies to calculate a cutting path. For better illustration, we show in Fig. 6 the two
possible cases that a topological outlier can be represented in the Reeb graph. In Fig. 6(a),
the arc of the Reeb graph, which is composed of the triangles plotted in red, captures this
outlier attached to a box as a handle. On the other hand, this outlier could also be captured
by an arc that forms a tunnel as plotted in Fig. 6(b). To differentiate these two cases, we
compute the arc feature H(Ei) as defined in (12) for each arc Ei ∈ TO. If H(Ei) > 0, which
means the centroids of the start and end level contours are enclosed by the surface as in the
case plotted in Fig. 6(a), we classify Ei as a handle. If H(Ei) < 0, which means the centroids
of the start and end level contours fall outside the surface as shown in Fig. 6(b), we classify
Ei as a tunnel. For a handle or tunnel, we use a different method to find a cutting path with
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minimal length if a cut operation is needed. If Ei is a handle, we uniformly sample a set of
level contours of the eigenfunction f between the start contour  and end contour ,
and pick the contour with the least length as the cutting path. For example, a handle on a
WM boundary is plotted in red in Fig. 7(a) and the cutting path as the shortest level contour
is plotted in Fig. 7(b). For a tunnel, we combine two geodesic paths to form a cutting path.
The first geodesic goes from the start to the end node within the triangles ETi. The second
geodesic goes from the start to the end node without passing through the triangles in ETi.
For a tunnel on a WM boundary as shown in Fig. 7(c), the cutting path that is composed of
two geodesics is plotted in Fig. 7(d).

We use information from tissue classification and geometric regularity to make cut/fill
decisions about topological outliers. Based on tissue maps, we enforce the anatomical
knowledge that gyri on WM surfaces should not enclose CSF. Using the area distortion
during eigen-projection, we apply the assumption that the WM surfaces should have similar
geometric regularity as a folded sheet. From the analysis of the paired boundary estimates

 and , we have paired patches  on the genus-zero boundary estimate
. These patches fill the handles and tunnels on . For each paired patches, its interior

voxels are  and they are filled inside  to satisfy the genus-zero constraint, which

are illustrated in Fig. 7 for a handle and tunnel. At a paired patch , a cut decision should
be made if either of the following two conditions is met

• If the number of voxels  with Φ̂(p) ≤ 1 is greater than THDCSF.

• If the number of triangles  with ADF ( ) > γ is greater than THDGEO.

Both parameters THDCSF and THDGEO are thresholds we choose empirically to identify
topological outliers that are not consistent with the underlying image intensity distributions
and geometric regularity of cortical surfaces. The first condition checks if filling a handle or
tunnel needs more than THDCSF voxels classified as CSF in the enhanced tissue map. The
second condition measures the geometric regularity of the filling patches by calculating if
there are more than THDGEO triangles with its ADF, which is defined in (14), greater than
the threshold γ used for geometric outlier detection.

To implement the cut/fill decision from the analysis of paired patches, we use the handles
and tunnels detected by the Reeb analysis process. To cut open a paired component in ,
we pick a cutting path on a handle or tunnel that is connected to this paired component. For
the cutting path CPj of an arc Ej in R(f), we denote  (CPj) as the set of triangles it passes

on . We consider a paired component  connected to a cutting path CPj if the set

 is not empty, which means the exterior voxels of faces on the
cutting path intersects with the interior voxels of the paired patches. Among all cutting paths
intersecting the paired component, we choose the one with the shortest length and denote it
as CPJmin. To cut it open, we modify the evolution speed as

(15)

Similar to the modification for the removal of geometric outliers, this change to the
evolution speed is local and peels off a layer of voxels along the cutting path. To completely
cut open a large outlier, this process might be applied to the same outlier during each
iteration of our unified outlier correction algorithm. The number of iterations it takes for the
topology correction algorithm to converge depends on the complexity of the topological
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outliers in the mask boundary. In our experience from experiments on various MR datasets,
this process typically takes less than five iterations to converge.

D. WM and GM boundary estimate
With the modified speed obtained from the geometric and topological analysis process in
section IV-B and IV-C, we can repeat the above steps in section IV-A, IV-B and IV-C until
no changes are made to the WM speed. The genus zero estimate  then gives a clean
estimate of the WM boundary. For the example in Fig. 2(a), the cleaned WM boundary after
the removal of outliers shown in Fig. 5 is plotted in Fig. 8(a).

In order to reconstruct the GM boundary, we evolve the cleaned WM boundary outward
using the GM speed defined in (6) under the topology-preserving constraint. To remove
geometric outliers on the GM boundary estimate, the Reeb analysis is applied to this genus
zero surface and the geometric outlier correction process described in section IV-B is
applied iteratively. By removing the spurious outliers, we obtain a clean estimate of the GM
boundary. As an illustration, the cleaned GM boundary corresponding to the example in Fig.
2 is plotted in Fig. 8(c).

V. Sub-voxel Accuracy with Adaptive Interpolation
After removing geometric and topological outliers, we obtain a clean reconstruction of the
boundary between two tissue types. For the WM surface, it is the boundary between WM
and GM. For the GM surface, it is the boundary between GM and CSF. To achieve sub-
voxel accuracy in the final surface reconstruction, we develop an adaptive interpolation
method in this section.

For a tissue boundary between a high intensity tissue Φh and low intensity tissue Φl, we
denote B = (B1, B2, · · ·, BNB) as the set of rectangular faces and  = ( , ) the triangular
mesh representation of the boundary surface as defined in section III-A. The pair (Φh, Φl)
could be (3, 2) for the WM boundary or (2, 1) for the GM boundary. For a face Bi, its

interior voxel neighbor is  and exterior voxel neighbor is . We denote BVin
and BVout as the set of interior and exterior neighboring voxels of all rectangular faces on
the boundary, respectively.

For each voxel p ∈ BVin ∪ BVout, its cuboid  (p) has two faces in each of the x, y, and z
direction. To calculate the shift of faces for partial volume modeling, we count the number
of faces that the intersection of  (p) and B, i.e.,  (p) ∩ B, have in the x, y, z direction and
denote them as Nx(p), Ny(p), and Nz(p), respectively. We also estimate locally the image
intensity Ψh(p) for the high intensity tissue Φh as the mean intensity of voxels classified as
Φh in the 5 × 5 × 5 neighborhood centered at p. Similarly, the image intensity Ψl(p) of the
low intensity tissue Φl is estimated locally as the mean intensity of voxels classified as Φl in
the same neighborhood. The fraction of high intensity tissue Φh contained in this voxel p can
then be computed with linear interpolation as:

(16)

To account for this partial volume effect, we will shift faces on the boundary. Let β(p) =
min(1, Nx(p)) + min(1, Ny(p)) + min(1, Nz(p)) be the total number of directions that we will
shift faces. The shrink factor in each direction is then α(p)1/β(p).
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For a face Bi, if the tissue map of its interior voxel , it needs to move inward

according to the shift factor α′ (p*) = 1 − α(p*)1/β(p*) computed with . If

, it needs to move outward according to the partial volume shift factor α′

(p*) = α(p*)1/β(p*) computed from . Let  denote the coordinate

of the point p*. We also denote  as the projection of p* onto the face Bi,
which is the nearest point on the face Bi. The shift for this face is

(17)

where the shift in each direction is multiplied by the corresponding spatial resolution, and
divided by the number of faces that  (p*) ∩ B has in that direction.

Given the shift of all faces in B, we calculate the shift for a vertex  ∈  as the average shift
of its neighboring faces:

(18)

where  ( ) denote the set of rectangular faces in the neighborhood of the vertex , and #
 ( ) is the number of rectangular faces in this set.

Let x denote the vector of coordinates of all vertices, and  the shift of all vertices. We
compute the final vertex coordinates with sub-voxel accuracy by minimizing the following
energy function:

(19)

where x̂ is the optimized vertex coordinate, Δ is the discrete Laplacian matrix of the mesh,
and η is a regularization parameter. Note that we have chosen the Laplacian instead of the
gradient operator in the regularization term to avoid large shrinkage effects from the
gradient operator. The solution of this quadratic problem gives us the coordinates of vertices
on the smoothed surface:

(20)

1Part of the data used in the preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI)
database (adni.loni.ucla.edu). ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and
non-profit organizations, as a $60 million, 5- year public-private partnership. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early
Alzheimers disease (AD). Determination of sensitive and specific markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.
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By applying the sub-voxel calculation to both the WM and GM surfaces, we obtain our final
solution for cortical surface reconstruction. As an illustration, we have plotted the surfaces
before and after sub-voxel interpolation in Fig. 8. Clearly we can see the improved quality in
the reconstructed surfaces after the application of the adaptive interpolation scheme.

VI. Experimental Results
In this section, we present experimental results on 40 simulated MR images and T1-
weighted real MR images of 200 subjects to demonstrate that our method can reconstruct
high quality cortical surfaces on large scale data sets. We also compare our results with
surfaces reconstructed with FreeSurfer [5], [52], a widely used software for cortical surface
reconstruction and analysis in brain imaging research, to demonstrate that our method can
obtain better results with significantly less computational cost.

The simulated dataset includes a set of 20 simulated MR images from a publicly available
dataset [61], and a set of 20 images we simulated with known gray matter atrophy. The real
T1-weighted MR images used in our experiments are from two publicly available databases.
The first dataset has 100 baseline MR images, from 50 normal controls (NC) and 50
Alzheimer’s disease (AD) patients, from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database [62]1. The second dataset includes MR images of 100 subjects from the
International Consortium of Brain Mapping (ICBM) [63]. The 100 subjects have a wide age
range from 19 to 80.

All MR images were first automatically skull-stripped with a meta algorithm [64] in the
LONI pipeline [65]. Using the skull-stripped images, our system and FreeSurfer
automatically reconstructed the WM and GM surfaces on the left and right hemispheres in
all subjects. For our method, the same set of parameters are used: ρ1 = 100mm, ρ2 = 5, γ =
100, THDCSF = 5, THDGEO = 5, η = 10. For FreeSurfer, the default settings were used. All
computations are carried out on the grid of the LONI pipeline. In general, our system takes
around 2–4 hours to reconstruct surfaces from each subject. For FreeSurfer, the surface
reconstruction process typically takes around 10 to 20 hours, and the whole workflow,
including surface labeling, can take 20 to 30 hours.

A. Qualitative comparisons
As an illustration, we first present in this experiment a detailed comparison between our
method and FreeSurfer using the same MR scan plotted in Fig. 2. This is an MR image of an
AD patient from the ADNI dataset. Representative examples from both the ADNI and
ICBM datasets will then be presented to demonstrate that our method can reconstruct
surfaces that better preserve the integrity of cortical anatomy.

For the MR image of an AD patient, we applied our method and FreeSurfer to reconstruct
the WM and GM surfaces on both hemispheres. Computationally our method took around 3
hours and is much more efficient than FreeSurfer, which took over 10 hours. Both our
method and FreeSurfer successfully reconstructed cortical surfaces with genus-zero
topology. The unified outlier removal process of our method took around 20 minutes for
each hemisphere. The topological correction process in FreeSurfer took more than one and
half hour for each hemisphere. As a more detailed illustration of the Reeb analysis process
for outlier removal, we plotted in Fig. 9 the number of nodes in the Reeb graph, the number
of geometric outliers, and the number of total handles and tunnels at each iteration of our
algorithm. With the increase of iteration, we can see the complexity of the Reeb graph
decreases with the number of outliers in the boundary. For this image, it took 3 iterations for
the unified outlier correction algorithm to converge when all geometric outliers were
removed and no more cuts to be made. After that, a topology-preserving evolution was

Shi et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



applied to reconstruct a genus-zero boundary. The adaptive interpolation scheme developed
in section V was finally applied to reconstruct a smooth and accurate representation of the
cortical surface. As an illustration, we plotted the intersection of the image slice shown in
Fig. 2(a) with the WM and GM surfaces reconstructed by our method in Fig. 2(g) and (h).
From the results we can see that our method is able to robustly reconstruct the WM and GM
boundaries even in the presence of tissue degeneration such as the white matter degeneration
on the right hemisphere of this AD patient.

To compare the results from our method and FreeSurfer, the left hemispherical WM surfaces
reconstructed by both methods are plotted in Fig. 10. The two WM surfaces have similar
number of vertices because they are both derived from the WM mask boundary. The
FreeSurfer WM surface has 137309 vertices, and our WM surface has 138130 vertices. In
regions highlighted in the dashed circles in Fig. 10, we can see that our method produces
more complete reconstruction of the boundary, which is better illustrated with the
intersections of surfaces and two axial slices shown in Fig. 10(c) and (f). The left
hemispherical GM surfaces reconstructed with our method and FreeSurfer are plotted in Fig.
11. Because the FreeSurfer GM surface is obtained by deforming the WM mesh to the GM
boundary, it has the same number of vertices as its WM surface and typically has irregular
triangles. On the contrary, our method follows the boundary between GM and CSF to
generate a more uniform mesh representation of the GM surface. The GM surface
reconstructed with our method here has 145136 vertices, which has slightly more vertices
than the WM surface. This is natural in order for the GM surface to have the same level of
vertex density and accuracy as the WM surface because it has a larger area than the WM
surface. From the highlighted mesh structures of four ROIs in Fig. 11, we can see that
FreeSurfer produced broken gyri in these regions while our method is able to generate more
complete reconstruction at these gyri. The intersections of the GM surfaces reconstructed by
our method and FreeSurfer with three sagittal slices are shown in Fig. 12, which illustrate
that our surface can better capture deep sulcal regions. This shows that the localized outlier
detection and filtering approach in our method is able to avoid shrinkage and produce a
more accurate surface representation in these regions.

To further demonstrate that surfaces generated by our method are able to better represent the
integral anatomy of the cortex, we have plotted in Fig. 13 more representative reconstruction
results from ADNI and ICBM data. For each subject, the left hemispherical GM surfaces
reconstructed by our method and FreeSurfer are plotted with differences highlighted in
dashed circles. Compared with results from our method, we can see that FreeSurfer results
failed to reconstruct a complete gyrus in the regions enclosed in the dashed circles. This
shows that our method is able to produce a more complete representation of cortical
anatomy.

B. Atrophy detection on simulated MR images
In this experiment, we will compare our method and FreeSurfer on the detection of
simulated atrophy in MR images where the ground truth of WM, GM, and CSF tissue maps
are known. By matching reconstructed cortical surfaces with the underlying tissue
boundaries, we can analyze the performance of different topology correction strategies in
our method and FreeSurfer. Using the reconstructed WM and GM surfaces, we can calculate
cortical thickness and compare quantitatively the ability of these two methods in detecting
sub-voxel tissue atrophy.

To simulate longitudinal brain atrophy, we first downloaded from BrainWeb [66] a set of 20
simulated MR images of normal subjects with known WM, GM, and CSF tissue maps [61]
and used them as the baseline images. All images have an isotropic spatial resolution of
1mm. Using these tissue maps, we simulated a 0.1 mm GM atrophy everywhere on the
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cortex by modifying intensities in the MR images. For each voxel with more than 10 percent
GM tissue and on the boundary of GM and CSF, we introduced a sub-voxel atrophy by
subtracting its intensity by 10 percent of the difference between the average GM intensity
and CSF intensity in the image because we assumed the lost GM tissue in this voxel will be
replaced by CSF. By applying this procedure to all baseline images, we obtained a set of 20
images with simulated GM atrophy, which we denoted as follow-up scans of these 20
subjects. Both our method and FreeSurfer were applied to the 40 simulated images to
reconstruct the WM and GM cortical surfaces.

From the examples shown in Fig. 10 and Fig. 13, we see various cases that our method is
able to generate a more integral reconstruction of the superior temporal cortex than
FreeSurfer. With simulated images, we have the opportunity to demonstrate this on images
with known tissue boundaries. In Fig. 14(a) and (d), we plotted the left WM surfaces
reconstructed from one of the baseline images with our method and FreeSurfer, where we
can clearly see that our result has a more integral representation of the superior temporal
cortex. For both methods, we extracted the WM boundary before topology correction to
investigate the cause of this difference. In Fig. 14 (b) and (d), we plotted the corresponding
WM boundary without topology correction in the region highlighted by the dashed ellipses
in Fig. 14 (a) and (d), respectively. In both cases, we can see a hole is clearly present on the
superior temporal gyrus. Different correction strategies were adopted by these two methods:
our method chose to fill the hole, while FreeSurfer decided to cut it open. As a result,
different surface reconstruction results were obtained as shown in Fig. 14(c) and (f). The
intersection of the reconstructed surfaces with two sagittal slices of the underlying true WM
tissue map were plotted in Fig. 14 (g) and (h), where our result was plotted in red and the
FreeSurfer result was plotted in blue. As highlighted by the green arrows in these two
pictures, we can see that our result provides a more faithful representation of the underlying
tissue boundary at the superior temporal cortex.

To compare the performance of our method and FreeSurfer in the detection of simulated
longitudinal atrophy, we parcellated all cortical surfaces into gyral regions and tested for
GM thickness changes in each region. In this work, we used the gyral labels on GM surfaces
generated by FreeSurfer for a localized comparison. In order to project the FreeSurfer label
onto our surface, we aligned both surfaces in the image space. For each vertex on our
surface, we found the nearest vertex on the FreeSurfer surface such that the normal
directions of both vertices have positive inner products and pulled back the label on this
vertex. As an illustration, we plotted in Fig. 15 the labels on the GM surfaces generated by
FreeSurfer and our method as shown in Fig. 11. We can see that we have successfully
mapped the gyral labels onto the GM surface generated by our method. At each point of a
GM surface, we used its distance to the closest point on the WM surface as the measure of
thickness [7], [67]. Numerically, we first computed the signed distance function of the WM
surface with the fast marching method [68], and then calculated the thickness at each vertex
of the GM surface with sub-millimeter accuracy by interpolating the value of the signed
distance function. For surfaces generated by both our method and FreeSurfer, the same
approach of thickness calculation was applied for consistency. On results generated by both
our method and FreeSurfer, we calculated the change of mean thickness on each gyrus
between the follow-up and baseline scan of each subject. On each gyrus, a two-tailed t-test
was applied to the thickness changes of the 20 subjects and tested if we could reject the null-
hypothesis that there is no significant change of thickness between the baseline and follow-
up scan. For cortical surfaces generated by our method and FreeSurfer, the p-values obtained
from the t-tests at each gyrus were mapped onto the corresponding gyrus of a subject and
plotted in Fig. 16, where p-values larger than 0.01 were considered insignificant and plotted
in light gray. From the results, it is clear that our method was able to detect significant
atrophy in more regions and generate more significant p-values than FreeSurfer. More
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specifically, on the left hemisphere, our results produced more significant p-values on 20 of
the 34 gyral regions. On the right hemisphere, our results produced more significant p-
values on 25 of the 34 gyral regions. Next we will demonstrate that our method can achieve
more statistically significant results than FreeSurfer on the real data from ADNI and ICBM.

C. Quantitative comparisons on ADNI data
In the third experiment, we applied both our method and FreeSurfer to the 100 MR images
from ADNI. To compare the performance of our method and FreeSurfer in detecting group
differences, we parcellated cortical surfaces into gyral regions and use the mean thickness of
each gyrus as the variable for statistical tests. As described in the previous experiment, we
used the gyral labels on GM surfaces generated by FreeSurfer to parcellate our surfaces via
nearest neighbor projection.

For surfaces generated by both methods, the thickness of each vertex on the GM surface was
computed as its distance to the corresponding WM surface. For each gyrus, we computed
the average gray matter thickness and tested group differences between NC and AD using
two tailed t-tests. As an illustration of the thickness differences across groups, we plotted in
Fig. 17 the mean thickness of gyral regions from the NC and AD group. By comparing the
thickness of corresponding gyrus from the two groups, we can clearly see that the AD group
have thinner cortex throughout the brain. For the results produced by our method and
FreeSurfer, the p-values from t-tests were mapped onto the corresponding gyrus of the left
hemisphere (LH) and right hemisphere (RH), and plotted in Fig. 18. Note that p-values
larger than 0.01 were considered insignificant and plotted in light gray. We can see that both
methods are very effective in detecting differences between the NC and AD groups on both
hemispheres, whereas the degrees of difference vary on different gyri. For the left
hemisphere, results from our method produces more significant p-values on 33 of the 34
regions. For the right hemisphere, our results generate more significant p-values on 30 of the
34 regions.

For the two-tailed t-test on the mean thickness of each gyrus, we also performed power
analysis [69] to compare the power of thickness features generated by our method and
FreeSurfer in detecting group differences. The power of the t-test is the probability that the
null hypothesis will be rejected if it is false. The type I error, i.e., the p-value, was set to

0.01. For each method, the effective size at a gyrus was computed as  [69],
where MTNC and MTAD were the mean thickness of the NC and AD group, respectively,
and σ was the pooled standard deviation. The power was computed with the software tool
PS [70]. For both our method and FreeSurfer, we counted the number of gyri in each
hemisphere with power greater than four thresholds 0.99, 0.95, 0.90, 0.85. The results are
listed in Table III. We can see from the power analysis that our method is able to generate
more sensitive thickness features on both hemispheres for all thresholds. From a study
design point of view, this shows the thickness features derived from our method has the
potential of reducing sample sizes in experiments for AD research.

D. Quantitative comparisons on ICBM data
In the fourth experiment, we tested on MR images of 100 subjects from the ICBM database.
We split the 100 subjects into young and elderly groups using an age threshold of 48 years
such that each group had 50 subjects. For each subject, we downloaded two scans for our
experiments. For the first scan of each subject, we applied our method and FreeSurfer for
comparison. The repeat scan of each subject will be used to demonstrate the reproducibility
of our method.
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Using surfaces generated by both methods on the first scan of each subject, we tested for
group differences between the young and elderly groups and compared the statistical power
of our method and FreeSurfer. Using the same method described in VI-B, we projected
FreeSurfer labels onto the surfaces generated by our method and applied two-tailed t-tests to
the mean thickness of each gyrus from the young and elderly groups. The mean thickness of
gyral regions obtained from our method were plotted in Fig. 19, where we can see that the
elderly group have lower thickness throughout the cortex. The p-value maps generated by
our method and FreeSurfer were plotted in Fig. 20, where the same colormap as in Fig. 18
was used and p-values over 0.01 were plotted in light gray. For each hemisphere, t-tests with
thickness measures generated by our method have more significant p-values than FreeSurfer
on 33 of the 34 gyri.

Similar to the experiment on ADNI data, we also performed power analysis for the mean
thickness measure generated by our method and FreeSurfer at each gyrus. For both methods,

the p-value was set to 0.01, and the effective size was computed as , where MTY
and MTO were the mean thickness of the young and elderly groups, and σ was the pooled
standard deviation. For each method, we counted the number of gyrus on each hemisphere
with power exceeding the thresholds. The results were listed in Table IV. On this data set,
we can see our method is able to generate a much larger number of sensitive thickness
features than FreeSurfer. This demonstrates that our method achieves better performance on
both the ADNI and ICBM datasets with very different demographic distributions.

To test the reproducibility of our method, we also applied our method to the repeat scan
from each of the 100 subjects in the ICBM dataset. To parcellate each GM surface
reconstructed from a repeat scan into gyral regions, we rigidly aligned it with the
corresponding GM surface from the first scan and used the nearest neighbor projection as
described in VI-B to generate the gyral labels. For the results obtained from the repeat scans,
the same power analysis was applied to the mean thickness of each gyrus from the young
and elderly group. The results were listed in Table V. Compared with the results from the
first scans, we can see that our method is able to successfully generate very similar and large
numbers of sensitive thickness features in the repeat scans, which demonstrates the
reproducibility of our method.

VII. Conclusions
In this paper we have developed a novel system for automated cortical reconstruction from
T1-weighted MR images. We have demonstrated that our system is able to generate high
quality surfaces with much reduced computational cost when compared with FreeSurfer.
The unified approach presented in this work for the analysis of geometric and topological
structures, while developed in the context of cortical reconstruction, is general and
applicable for other medical image analysis problems.

In this work, we focused on the reconstruction of the WM and GM surfaces. There are also
considerable interests in obtaining a central cortical surface from MR images as a balanced
representation of the WM and GM surfaces [7]. There are two different approaches we can
follow to achieve this goal. Using the reconstructed WM and GM surfaces, a surface
evolution algorithm can be developed as in [7] to evolve the WM surface to the middle of
the GM tissue. We can also take a shape analysis approach to find the central cortical
surface. In our recent work, we developed an intrinsic surface mapping method that can
evolve the WM and GM surface toward each other in a high dimensional embedding space
by optimizing their conformal metrics [43]. By establishing one-to-one correspondences
between the WM and GM surface with this intrinsic mapping algorithm, we can compute the
central cortical surface as the mean shape of the WM and GM surface. Using the one-to-one
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map between the WM and GM surfaces, we can also develop a more robust method to
compute cortical thickness than using the distance transform of the WM surface, which can
result in possible underestimation of thickness in the extreme case of neighboring sulcal
banks with highly uneven thickness.

In future work, we will also perform more extensive validations on data from a wide range
of neuroimaging studies, and extend the system to the consistent reconstruction of surfaces
on data from longitudinal studies [11], [71].
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Fig. 1.
An overview of our cortical reconstruction system.
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Fig. 2.
Tissue enhancement with Hessian features and atlas labels. Using enhanced tissue maps and
atlas labels, evolutions speeds are designed to reconstruct the WM (red) and GM (blue)
boundaries of the left hemisphere (LH) and right hemisphere as plotted in (g) and (h).
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Fig. 3.
Mesh augmentation by splitting triangles. Original edge: black. Level contour: red. Inserted
edge: green. (a) Keep the triangle. (b) Split into two triangles. (c) Split into three triangles.
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Fig. 4.
Reeb graph construction of a double torus using a LB eigenfunction. (a) An illustration of
the level contours in the neighborhood of a saddle point. (b) An illustration of the arc
construction process in building the Reeb graph. (c) The final partition of the surface with
the Reeb graph.

Shi et al. Page 29

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Geometric and topological outlier detection with the Reeb graph of the LB eigenfunction.
Zoomed views of geometric and topological outliers are plotted in (c) and (d), respectively.
Yellow: Geometric outliers. Red: Topological outliers.
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Fig. 6.
A Reeb graph can capture a topological outlier with an arc in the form of a handle (a) or
tunnel (b).
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Fig. 7.
Topological analysis of handles and tunnels detected with Reeb analysis. (a) A handle
detected with Reeb analysis. (b) Red: arc of the Reeb graph. Green: filling voxels. (c) A
tunnel detected by Reeb analysis. (d) Red: arc of the Reeb graph. Green: filling voxels.
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Fig. 8.
The WM and GM surface before and after sub-voxel calculations. (a) WM boundary after
removal of outliers. (b) WM surface with sub-voxel accuracy. (c) GM boundary after
removal of outliers. (d) GM surface with sub-voxel accuracy.
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Fig. 9.
The iterative process of outlier removal with Reeb analysis.
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Fig. 10.
Comparison of WM surfaces reconstructed by our method and FreeSurfer. Surfaces are
colored by their mean curvature and plotted in both lateral and medial views. (a)(d) Our
result. (b)(e) FreeSurfer result. (c)(f) Intersection of an image slice with circled regions in
(a)(b) and (d)(e), respectively. Red contour: our result. Blue contour: FreeSurfer result.
Green arrows in (c) and (f) highlight the differences.
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Fig. 11.
Comparison of the GM surface reconstructed by our method and FreeSurfer. (a)(b) Lateral
and medial views of our result. (c)(d) Lateral and medial views of FreeSurfer result. The
mesh structures of four highlighted ROIs are plotted to demonstrate differences between
these two results.
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Fig. 12.
Intersection of image slices with GM surfaces reconstructed with our method (red contours)
and FreeSurfer (blue contours). Green arrows point to locations where our surface can better
capture deep sulcal regions.
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Fig. 13.
Comparison of cortical reconstruction results on four ADNI and four ICBM cases. For each
case, the result from our method is plotted on the top, and the result from FreeSurfer is
plotted on the bottom. Different views are selected for different subjects to better illustrate
differences in regions highlighted with dashed circles.
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Fig. 14.
Comparison of our method and FreeSurfer on a simulated image with known WM tissue
map. (a) The WM surface reconstructed by our method. (b)(c) A zoomed view of the circled
region in (a) before topology correction and after final reconstruction. (d) The WM surface
reconstructed by FreeSurfer. (e)(f) A zoomed view of the circled region in (d) before
topology correction and after final reconstruction. (g)(h) Intersection of reconstructed
surfaces with the true WM tissue map. Red contour: our method; Blue contour: FreeSurfer.
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Fig. 15.
Projection of FreeSurfer gyral labels onto the GM surface reconstructed by our method.
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Fig. 16.
Gyrus-based map of p-values from the testing of longitudinal atrophy on LH and RH
surfaces from our results (a, b) and FreeSurfer results (c, d).
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Fig. 17.
Mean thickness of gyral regions on the left and right hemisphere of the NC and AD group.
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Fig. 18.
Gyrus-based map of p-values from the testing of NC versus AD group differences on LH
and RH surfaces from our results (a,b), and FreeSurfer results (c, d).
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Fig. 19.
Gyrus-based thickness map of the young and elderly group.
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Fig. 20.
Gyrus-based map of p-values from the testing of young and elderly group differences on LH
and RH surfaces from our results (a, b) and FreeSurfer results (c, d).
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TABLE I

Ridge/Valley Detection Algorithm

R: Region to be thinned.

RF : ridge/valley detection feature.

Initialize a heap  with voxels on the boundary of R using RF as the sorting key.

do

 P = PopHeap( ).

 If P is a simple point but not an end point [55]

  Remove P from R.

  Insert neighbors of P in R to  if they are simple points.

 End

while  is not empty.

The voxels left in R is the ridge/valley set.
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TABLE II

Reeb Graph Arc Growing

RI : Initial set of vertices in the region.

LV : Label vector initialized to be 1 for vertices in S and zero for other vertices in V̂.

LT : Label vector initialized to be zero for all triangles in T̂.

Ξ: Triangle set initialized to be empty.

do

 Remove the first vertex x from RI.

 For each triangle T̂i ∈  (x) with label LT = 0

  If all vertices of T̂i have label LV = 1

   Add T̂i to Ξ

   Set the label LT = 1 at T̂i.

  End

 End

 If ArcLabel(x) = −1

  For each vertex y ∈  (x)

   If f(y) < f(x) and L(y) = 0

    Add y to RI.

    Set the label LV = 1 at y.

   End

  End

 Else

  Record current arc label as ArcLabel( x).

 End

while RI is not empty.

For vertices in the triangles of Ξ, reset the ArcLabel to −1.
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TABLE III

Power analysis of the ADNI experiment: number of thickness features from our method and FreeSurfer with
power above thresholds.

Power Threshold Our Method LH FreeSurfer LH Our Method RH FreeSurfer RH

0.99 25 12 28 14

0.95 27 15 29 21

0.90 30 21 30 25

0.85 32 22 31 25
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TABLE IV

Power analysis on first scans of ICBM dataset: number of thickness features from our method and FreeSurfer
with power above thresholds.

Power Threshold Our Method LH FreeSurfer LH Our Method RH FreeSurfer RH

0.99 30 3 30 4

0.95 32 9 33 8

0.90 32 14 33 12

0.85 33 18 33 12

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shi et al. Page 50

TABLE V

Power analysis on repeat scans of ICBM dataset: number of thickness features from our method with power
above thresholds.

Power Threshold Our Method LH Our Method RH

0.99 29 27

0.95 31 32

0.90 32 32

0.85 32 32
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